A choice model with imprecise ordinal evaluations
نویسندگان
چکیده
منابع مشابه
Handling imprecise evaluations in multiple criteria decision aiding and robust ordinal regression by n-point intervals
We consider imprecise evaluation of alternatives in multiple criteria ranking problems. The imprecise evaluations are represented by n-point intervals which are defined by the largest interval of possible evaluations and by its subintervals sequentially nested one in another. This sequence of subintervals is associated with an increasing sequence of plausibility, such that the plausibility of a...
متن کاملA Model for Decision Making with Missing, Imprecise, and Uncertain Evaluations of Multiple Criteria
In real-life multicriteria decision making (MCDM) problems, the evaluations against some criteria are often missing, inaccurate, and even uncertain, but the existing theories and models cannot handle such evaluations well. To address the issue, this paper extends the Dempster–Shafer (DS)/analytic hierarchy process (DS/AHP) approach of MCDM to handle three types of ambiguous evaluations: missing...
متن کاملBayesian Model Choice in Cumulative Link Ordinal Regression Models
The use of the proportional odds (PO) model for ordinal regression is ubiquitous in the literature. If the assumption of parallel lines does not hold for the data, then an alternative is to specify a non-proportional odds (NPO) model, where the regression parameters are allowed to vary depending on the level of the response. However, it is often difficult to fit these models, and challenges reg...
متن کاملOrdinal Embedding with a Latent Factor Model
Constructing low-dimensional embeddings based on ordinal measurements has been a subject of significant recent interest, motivated in part by machine learning applications using human input in a robust way. Recent work has focused on observations of comparisons on distances between objects. We consider a different model where the embedding is formed within a latent space of factors upon which a...
متن کاملThe Efficiency of MSBM Model with Imprecise Data (Interval)
Data Envelopment Analysis (DEA) is a mathematical programming-based approach for evaluates the relative efficiency of a set of DMUs (Decision Making Units). The relative efficiency of a DMU is the result of comparing the inputs and outputs of the DMU and those of other DMUs in the PPS (Production Possibility Set). Also, in Data Envelopment Analysis various models have been developed in order to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2014
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2013.09.001